Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetraaquatetraureaneodymium(III) triiodide

Ludmila Yu. Alikberova, ${ }^{\text {a }}$ Dmitry V. Albov, ${ }^{\text {b }}{ }^{*}$ Denis V. Golubev, ${ }^{\text {a }}$ Valery V. Kravchenko ${ }^{\text {a }}$ and Nataliya S. Rukk ${ }^{\text {a }}$
${ }^{\text {a }}$ Lomonosov State Academy of Fine Chemical Technology, Prosp. Vernadskogo 86, 117571, Moscow, Russian Federation, and ${ }^{\mathbf{b}}$ Department of Chemistry, Moscow State University, 119991, Moscow, Russian Federation
Correspondence e-mail: albov@struct.chem.msu.ru

Received 30 October 2007; accepted 13 November 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.010 \AA$; R factor $=0.034 ; w R$ factor $=0.070 ;$ data-to-parameter ratio $=27.3$.

In the ionic title complex, $\left[\mathrm{Nd}\left\{\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right\}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{I}_{3}$, the neodymium is located on a twofold rotation axis and is coordinated by four urea and four water molecules in a distorted square-antiprismatic geometry.

Related literature

For lanthanide complexes with urea, see: Dilebaeva \& Sulajmankulov (1973); Dilebaeva et al. (1975); Aitimbetov et al. (1977); Rukk et al. (1984); Alikberova et al. (1990); Savinkina et al. (2005). For related literature, see: Huber et al. (1985); Sulejmanov et al. (1971).

Experimental

Crystal data
$\begin{array}{ll}{\left[\mathrm{Nd}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{I}_{3}} & a=7.7633(19) \AA \\ M_{r}=837.25 & b=10.597(4) \AA \\ \text { Monoclinic, } P 2 / c & c=15.140(4) \AA\end{array}$
$\beta=108.136(19)^{\circ}$
$V=1183.7$ (6) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation

Data collection
Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.293, T_{\text {max }}=0.304$
3446 measured reflections
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.070$
$S=1.00$
3446 reflections
$\mu=6.15 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

3446 independent reflections
2589 reflections with $I>2 \sigma(I)$
1 standard reflection frequency: 120 min intensity decay: 2\%

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2058).

References

Aitimbetov, K., Sulajmankulov, K. S., Batyuk, A. G. \& Ismailov, M. (1977). Zh. Neorg. Khim. 22, 211-213.
Alikberova, L. Yu., Rukk, N. S., Loginova, G. P., Stepin, B. D., Zaitseva, M. G. \& Wang, L. (1990). XVII Chugaev Conference on the Chemistry of Complex Compounds, Minsk. Abstracts, Part 3, p. 577.
Dilebaeva, A., Nogoev, K. \& Sulajmankulov, K. (1975). Chemistry of Rare Earth and Nonferrous Metals, pp. 52-55. Frunze: Ilim.
Dilebaeva, A. \& Sulajmankulov, K. S. (1973). Zh. Neorg. Khim. 18, 2257-2261.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Huber, F., Schmeisser, M. \& Shenk, P. W. (1985). Handbuch der Präparativen Anorganishen Chemie, edited by G. Brauer. Russian translation, Vol. 2, pp. 337-338. Moscow: Mir.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rukk, N. S., Kuznetsova, G. P., Zaitseva, M. G. \& Olikov, I. I. (1984). Zh. Neorg. Khim. 29, 1970-1974.
Savinkina, E. V., Ansari, Y. F. A., Zamilatskov, I. A., Albov, D. V. \& Tsivadze, A. Y. (2005). Acta Cryst. E61, m664-m666.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sulejmanov, Kh., Poraj-Koshits, M. A., Antsyshkina, A. S. \& Sulajmankulov, K. S. (1971). Zh. Neorg. Khim. 16, 3394-3398.

supplementary materials

Tetraaquatetraureaneodymium(III) triiodide

L. Y. Alikberova, D. V. Albov, D. V. Golubev, V. V. Kravchenko and N. S. Rukk

Comment

An increased attention to investigation of different salts interaction with carbamide $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{Ur})$ is determined by the special features of the structure and properties of this ambidentate ligand which could be coordinated by the metal cation via both nitrogen atom of amino-group and oxygen atom of the carbonyl group. It should be noted that O -coordinated carbamide has a possibility to participate in the formation of the hydrogen bonding developed system as well as layered and channel structures of the clathrate-coordination nature, these systems being related to supramolecular ones (Sulejmanov et al., 1971). The neodymium-containing complexes are of great importance for preparation of laser, fiber optic and luminescent and other materials with interesting properties.

It has been found out that interaction of the lanthanide salts with carbamide leads to a number of different complexes whose composition is to a great extent temperature dependent. For example, at 288 and 303 K lanthanide chlorides yield the anhydrous complexes of different composition such as $\operatorname{LnCl}_{3} \cdot 4 U r, \operatorname{LnCl} l_{3} \cdot 6 U r(\operatorname{Ln}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Dy}$, Ho, Er, etc.) as well as $\mathrm{ErCl}_{3} \cdot 2 U r \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{TmCl}_{3} \cdot 2 U r \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Dilebaeva \& Sulajmankulov, 1973; Dilebaeva et al., 1975). At the same temperature conditions lanthanide bromides give analogous compounds $\operatorname{Ln} \mathrm{Br}_{3} \cdot 4 U r, \operatorname{Ln} \mathrm{Br}_{3} \cdot 6 U r(\operatorname{Ln}=\mathrm{La}, \mathrm{Ce}, \mathrm{Er}$, etc.), as well as $\mathrm{ErBr}_{3} \cdot U r \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Aitimbetov et al., 1977).

Regarding lanthanide iodides, anhydrous complexes $L n I_{3} \cdot 5 U r(L n=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}$, Yb, Lu) have been prepared at 273 K (Rukk et al., 1984; Alikberova et al., 1990). The compound $\mathrm{SmI}_{3} \cdot 8 U r$ has been synthesized at room temperature (Savinkina et al., 2005). The single-crystal X-ray diffraction studies confirmed the IR spectra investigation results with respect to coordination of the carbamide ligands via the $\mathrm{O}-\mathrm{atom}$ of the carbonyl group.

The aim of the present work is to synthesize and to investigate the new neodymium iodide complex with carbamide at room temperature.

The $\left[\mathrm{Nd}(\mathrm{Ur})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}$ complex cation is located on a twofold rotation axis and its geometry represents the distorted square antiprism with eight oxygen atoms (four from water molecules and four from the carbamide ones) located in the mentioned antiprism vertices. The complex cations form double layers, the NH_{2} groups of coordinated carbamide molecules of neighboring layers being symmetrically disposed. Almost flat ordered layers built from the iodide-ions are located between the double layers of complex cations. The results of our investigation confirm the early proposed assumption about the layered structure of lanthanide iodide complexes with carbamide, but we were unable to investigate hydrogen bonding geometry because of poor refinement of H atoms in this structure containing such heavy atoms as Nd and I .

supplementary materials

Experimental

Nonahydrate of neodymium(III) iodide $\mathrm{NdI}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ was prepared by the reaction of neodymium(III) carbonate with hydroiodic acid preliminary freed from iodine excess (Huber et al., 1985). The complex compound $\mathrm{NdI}_{3} \cdot 4 U r \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was synthesized by mixing $\mathrm{NdI}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ in molar ratio $1: 5$ without water addition. Interaction of crystalline reagents in the course of mixture grinding leads to the crystallization water liberation and formation of viscous transparent solution. Pale violet crystals are obtained after allowing the solution to stay for 2 weeks. The results of chemical analysis (titration with Na_{2} edta solution for neodymium content determination and gravimetric analysis via AgI formation for iodide-ion content determination) are as follows: Nd (wt.\%) 17.23 (calcd.), 16.15 (found); I(wt.\%) 45.48 (calcd.), 42.63 (found). The reduced content of Nd and I is possibly related with the compound hygroscopicity. M.p. 371 K .

Refinement

Amide H atoms were positioned geometrically and refined using a riding model with $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}$ of the parent atom. The largest difference peak is located at $0.6172,0.1779,0.2360$ with the distance $1.03 \AA \AA$ from Nd1.

Figures

Fig. 1. ORTEP-3 (Farrugia, 1997) view of the title complex, with atom labels. Displacement ellipsoids are drawn at 50% probability. H atoms are presented as a spheres of arbitrary radius. Symmetry code: (i) $1-x, y,-z+1 / 2$.

Tetraaquatetraureaneodymium(III) triiodide

Crystal data

$\left[\mathrm{Nd}\left(\mathrm{C}_{1} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{1}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}_{1}\right)_{4}\right]_{3}$	$F_{000}=774$
$M_{r}=837.25$	$D_{\mathrm{x}}=2.349 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2 / c$	Melting point: 371 K
Hall symbol: -P 2 yc	Mo $K \alpha$ radiation
$a=7.7633(19) \AA$	$\lambda=0.71073 \AA$
$b=10.597(4) \AA$	Cell parameters from 25 reflections
$c=15.140(4) \AA$	$\theta=14-15^{\circ}$
$\beta=108.136(19)^{\circ}$	$\mu=6.15 \mathrm{~mm}^{-1}$
$V=1183.7(6) \AA^{3}$	$T=293(2) \mathrm{K}$
$Z=2$	Prism, violet
	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4

$$
R_{\mathrm{int}}=0.000
$$

diffractometer

Radiation source: fine-focus sealed tube	$\theta_{\max }=30.0^{\circ}$
Monochromator: graphite	$\theta_{\min }=1.9^{\circ}$
$T=293(2) \mathrm{K}$	$h=-10 \rightarrow 10$
non-profiled ω-scans	$k=-14 \rightarrow 0$
Absorption correction: ψ scan	$l=-21 \rightarrow 9$

$T_{\text {min }}=0.293, T_{\text {max }}=0.304$
3446 measured reflections
3446 independent reflections
2589 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.070$
$S=1.00$
3446 reflections
126 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0298 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.73 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.55$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)$ is used only for calculating R -factors(gt) etc. and is not relevant to the choice of reflections for refinement. R -factors based on F^{2} are statistically about twice as large as those based on F , and R -factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Nd1	0.5000	$0.15416(3)$	0.2500	$0.03067(8)$
I1	0.0000	$0.53143(5)$	0.2500	$0.05980(15)$
I2	$0.82533(5)$	$0.78527(3)$	$0.49371(3)$	$0.05522(11)$
O1	$0.3857(6)$	$0.3168(4)$	$0.1427(3)$	$0.0869(14)$
C1	$0.3636(7)$	$0.4170(5)$	$0.0989(4)$	$0.0535(13)$
N11	$0.2203(6)$	$0.4292(5)$	$0.0241(4)$	$0.0677(13)$
H11A	0.1446	0.3680	0.0067	0.081^{*}

H11B	0.2030	0.4984	-0.0072	0.081^{*}
N12	$0.4807(7)$	$0.5126(5)$	$0.1217(4)$	$0.0891(19)$
H12A	0.5769	0.5061	0.1688	0.107^{*}
H12B	0.4600	0.5807	0.0892	0.107^{*}
O2	$0.4141(5)$	$-0.0102(3)$	$0.3359(3)$	$0.0595(10)$
C2	$0.3219(7)$	$-0.1020(6)$	$0.3391(5)$	$0.0649(16)$
N21	$0.2945(10)$	$-0.1930(6)$	$0.2739(5)$	$0.121(3)$
H21A	0.3421	-0.1863	0.2299	0.145^{*}
H21B	0.2293	-0.2578	0.2764	0.145^{*}
N22	$0.2716(12)$	$-0.1279(7)$	$0.4085(6)$	$0.165(4)$
H22A	0.3023	-0.0796	0.4565	0.198^{*}
H22B	0.2065	-0.1938	0.4078	0.198^{*}
O3	$0.2249(5)$	$0.2324(4)$	$0.2831(3)$	$0.0635(10)$
H3A	0.179	0.303	0.262	0.076^{*}
H3B	0.207	0.225	0.3356	0.076^{*}
O4	$0.2283(5)$	$0.0663(4)$	$0.1314(3)$	$0.0709(12)$
H4A	0.131	0.107	0.105	0.085^{*}
H4B	0.209	-0.008	0.109	0.085^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	$0.03188(14)$	$0.02026(13)$	$0.03909(17)$	0.000	$0.00991(12)$	0.000
I1	$0.0509(3)$	$0.0385(2)$	$0.0817(4)$	0.000	$0.0085(2)$	0.000
I2	$0.0559(2)$	$0.03773(17)$	$0.0624(2)$	$0.00232(14)$	$0.00431(16)$	$0.00285(15)$
O1	$0.083(3)$	$0.062(3)$	$0.113(4)$	$0.021(2)$	$0.027(3)$	$0.057(3)$
C 1	$0.052(3)$	$0.042(3)$	$0.068(3)$	$0.010(2)$	$0.020(3)$	$0.023(3)$
N 11	$0.059(3)$	$0.055(3)$	$0.081(3)$	$-0.005(2)$	$0.009(3)$	$0.020(3)$
N 12	$0.064(3)$	$0.064(3)$	$0.108(4)$	$-0.012(3)$	$-0.018(3)$	$0.030(3)$
O 2	$0.0502(19)$	$0.048(2)$	$0.077(3)$	$-0.0097(16)$	$0.0149(18)$	$0.0219(19)$
C 2	$0.056(3)$	$0.049(3)$	$0.087(4)$	$-0.006(3)$	$0.020(3)$	$0.025(3)$
N 21	$0.152(7)$	$0.087(5)$	$0.120(6)$	$-0.049(5)$	$0.039(5)$	$-0.008(4)$
N 22	$0.234(10)$	$0.125(7)$	$0.209(10)$	$-0.068(6)$	$0.175(9)$	$-0.025(6)$
O 3	$0.063(2)$	$0.053(2)$	$0.086(3)$	$0.0198(19)$	$0.039(2)$	$0.016(2)$
O 4	$0.056(2)$	$0.053(2)$	$0.079(3)$	$0.0128(18)$	$-0.0164(19)$	$-0.027(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Nd} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.345(4)$
$\mathrm{Nd} 1-\mathrm{O} 1$	$2.345(4)$
$\mathrm{Nd} 1-\mathrm{O} 2$	$2.389(3)$
$\mathrm{Nd} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.389(3)$
$\mathrm{Nd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.484(3)$
$\mathrm{Nd} 1-\mathrm{O} 3$	$2.484(3)$
$\mathrm{Nd} 1-\mathrm{O} 4$	$2.487(3)$
$\mathrm{Nd} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.487(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.235(6)$
$\mathrm{C} 1-\mathrm{N} 11$	$1.324(7)$

$\mathrm{N} 12-\mathrm{H} 12 \mathrm{~A}$	0.8600
$\mathrm{~N} 12-\mathrm{H} 12 \mathrm{~B}$	0.8600
$\mathrm{O} 2-\mathrm{C} 2$	$1.218(6)$
$\mathrm{C} 2-\mathrm{N} 22$	$1.259(9)$
$\mathrm{C} 2-\mathrm{N} 21$	$1.348(9)$
$\mathrm{N} 21-\mathrm{H} 21 \mathrm{~A}$	0.8600
$\mathrm{~N} 21-\mathrm{H} 21 \mathrm{~B}$	0.8600
$\mathrm{~N} 22-\mathrm{H} 22 \mathrm{~A}$	0.8600
$\mathrm{~N} 22-\mathrm{H} 22 \mathrm{~B}$	0.8600
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	0.8500

sup-4

supplementary materials

C1-N12	1.333 (7)	O3-H3B	0.8500
N11-H11A	0.8600	O4-H4A	0.8500
N11-H11B	0.8600	O4-H4B	0.8500
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 1$	85.4 (3)	N11-C1-N12	118.1 (5)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 2$	105.55 (16)	C1-N11-H11A	120.0
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 2$	143.45 (14)	C1-N11-H11B	120.0
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 2^{\mathrm{i}}$	105.55 (16)	H11A-N11-H11B	120.0
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 2^{\mathrm{i}}$	86.4 (2)	$\mathrm{C} 1-\mathrm{N} 12-\mathrm{H} 12 \mathrm{~A}$	120.0
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 3^{\text {i }}$	77.19 (16)	$\mathrm{C} 1-\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B}$	120.0
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {i }}$	139.17 (13)	H12A-N12-H12B	120.0
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 3$	74.39 (15)	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Nd} 1$	150.6 (4)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 3$	74.34 (13)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 22$	123.1 (8)
$\mathrm{O} 2{ }^{\text {i}}-\mathrm{Nd} 1-\mathrm{O} 3$	139.17 (13)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 21$	120.2 (6)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 3$	140.99 (19)	N22-C2-N21	115.8 (7)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 4$	145.93 (14)	$\mathrm{C} 2-\mathrm{N} 21-\mathrm{H} 21 \mathrm{~A}$	120.0
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 4$	73.87 (16)	C2-N21-H21B	120.0
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 4$	78.60 (15)	H21A-N21-H21B	120.0
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 4$	69.62 (12)	$\mathrm{C} 2-\mathrm{N} 22-\mathrm{H} 22 \mathrm{~A}$	120.0
O 3 - ${ }^{\text {i }} \mathrm{Nd} 1-\mathrm{O} 4$	124.67 (16)	$\mathrm{C} 2-\mathrm{N} 22-\mathrm{H} 22 \mathrm{~B}$	120.0
$\mathrm{O} 3-\mathrm{Nd} 1-\mathrm{O} 4$	71.41 (15)	H22A-N22-H22B	120.0
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 4^{\text {i }}$	145.93 (14)	Nd1-O3-H3A	121
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {i }}$	69.62 (12)	Nd1-O3-H3B	124
$\mathrm{O} 3-\mathrm{Nd} 1-\mathrm{O} 4^{\mathrm{i}}$	124.67 (16)	H3A-O3-H3B	105.1
$\mathrm{O} 4-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {i }}$	136.01 (18)	Nd1-O4-H4A	125
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Nd} 1$	164.4 (4)	Nd1-O4-H4B	130
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 11$	118.9 (5)	H4A-O4-H4B	105.2
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 12$	123.0 (5)		

supplementary materials

Fig. 1

